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Homoepitaxial Ga2O3 rectifiers with vertical geometry were subject to 18 MeV alpha particle

irradiation at fluences of 1012–1013 cm�2, simulating space radiation exposure. The range of these

particles (�80 lm) is much greater than the drift layer thickness in the structures (�7 lm). The

carrier removal rates were in the range of 406–728 cm�1 for these conditions. These values are

factors of 2–3 higher than for high energy (10 MeV) protons and 2 orders of magnitude higher than

for 1.5 MeV electron irradiation of the same material. The on-state resistance of the rectifiers is

more degraded by alpha particle irradiation than either ideality factor or barrier height. The reverse

breakdown voltage of the rectifiers increases with alpha particle dose as carriers in the drift region

are removed by trapping into traps created by the radiation damage. The on/off ratio of the rectifiers

was severely degraded by alpha particle-induced damage, but the reverse recovery characteristics

were unaffected even by the highest dose, with values around �20 ns. Published by the AVS.
https://doi.org/10.1116/1.5027613

I. INTRODUCTION

There is currently significant interest in the use of b-

Ga2O3 for ultrahigh power electronics and solar blind photo-

detectors.1–17 The b-polymorph can be readily grown in the

form of high-crystalline-quality bulk crystals and thick epi-

taxial films.1–5 This polymorph has a bandgap of �4.85 eV,

with a breakdown field of 8 MV/cm, and electron saturation

velocity of 2� 107 cm/s. For device applications, controlla-

ble n-type doping can be achieved with Sn or Si donors. It is

not yet clear if extrinsic p-type doping can be achieved due

to the formation of self-trapped holes. Large area bulk

substrates are commercially available, and various types of

devices, including Schottky diode power rectifiers, field

effect transistors with Schottky or insulated gates, and high-

sensitivity solar-blind photodetectors have been demon-

strated. Since many of the expected applications of Ga2O3

involve space-borne deployment, there is interest in its abil-

ity to withstand high radiation fluences of the type encoun-

tered in satellite or space applications and how it compares

with materials like GaN.18–26 These wide bandgap semicon-

ductors have high bond strengths and hence vacancy forma-

tion energies. This means that they will have fewer atomic

displacements per incoming nonionizing radiation particle

than lower gap semiconductors.27–34 The radiation hardness

also depends on the type of defects created and their electri-

cal activity.19 For example, in n-type layers, the creation of

compensating acceptors like Ga vacancies has a strong influ-

ence on the remaining net carrier concentration.19 There are

already significant concentrations (>1018 cm�3) of ionized

Ga vacancies in currently available Ga2O3, as determined by

positron annihilation spectroscopy and electron paramag-

netic resonance.35,36

There have been some recent reports on the effect of pro-

ton, electron, gamma ray, and neutron irradiation on devices

and material properties of n-type b-Ga2O3 under conditions

relevant to space exposure conditions.22–27,37–39 In general,

the carrier concentration decreases due to trap formation as a

result of radiation damage, the electron mobility degrades

and this leads to changes in the performance of the rectifiers

and UV photodetectors tested. The few reports of carrier

removal rates in Ga2O3 as a result of radiation exposure

show them to be roughly comparable to those in GaN of sim-

ilar doping levels for the same types of fluences.22–27

In this paper, we report the effect of 18 MeV alpha particle

irradiation on vertical geometry b-Ga2O3 Schottky rectifiers.

The carrier removal rate is found to be �406–728 cm�1 for

this energy, the highest reported for any of the radiation types

examined to date.

II. EXPERIMENT

The starting samples were bulk b-phase Ga2O3 single

crystal wafers (�650 lm thick) with (001) surface orienta-

tion grown by the edge-defined film-fed growth method.1

Hall measurements showed these Sn-doped wafers had

carrier concentration of 2.2� 1018 cm�3. Epitaxial layers

(initially �20 lm thick) of lightly Si-doped n-type Ga2O3

(�8.3� 1015 cm�3) were grown on these substrates by

hydride vapor phase epitaxy. After growth, the episurfacea)Electronic mail: spear@mse.ufl.edu
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was subjected to chemical mechanical polishing to planarize

the surface, with a final epitaxial layer thickness of �7 lm.

Vertical geometry, homoepitaxial diodes were fabricated

by depositing a full area back Ohmic contacts of Ti/Au

(20 nm/80 nm) by e-beam evaporation. The front sides were

patterned by lift-off of electron-beam deposited circular

Schottky contacts Ni/Au (20 nm/80 nm) with the diameter of

210 lm. Figure 1 shows a schematic of the rectifier layer

structure. Current–voltage (I-V) characteristics were

recorded at 25 �C on an Agilent 4145B parameter analyzer.

The 18-MeV proton beam was generated using a MC-50

Cyclotron at the Korea Atomic Energy Research Institute.

The alpha particle beam was injected into a low-vacuum

chamber, where the b-Ga2O3-based devices were loaded,

facing the beam. The average beam-current, measured by

Faraday-cup, was 100 nA during the proton irradiation pro-

cess. Fluences were fixed at 1012 and 1013 cm�2. The pro-

jected range of the 18-MeV alpha particle beam was

calculated using the stopping and range of ions in matter

(SRIM) program and is 80 lm, as shown in Fig. 2. This

means that the alpha particles completely traverse the drift

region of the rectifiers and come to rest in the substrate. In

other words, the damage is mainly beyond the drift region.

III. RESULTS AND DISCUSSION

The forward and reverse bias I-V characteristics shown in

Fig. 3 demonstrate that the alpha irradiation-induced damage

is already measurable for the lowest dose. We can summa-

rize the effects on the I-V characteristics as follows:

(1) The barrier height and ideality factors showed little

change at either dose, but the on-state resistance, RON,

increased from 4 to 62 mX cm�2 at the higher dose. The

reverse breakdown voltage increased from 60 V in the

reference to 80 and 110 V, respectively, in the 1012 and

1013 cm�2 dose samples.

(2) The carrier concentration in the drift region decreased as a

result of alpha particle damage and led to an increase in

reverse breakdown voltage. The decrease in net electron

density in the epilayer results from the deep trap formation

by nonionizing energy loss that compensates the initial

donor doping. Previous experiments on proton irradiated

b-Ga2O3 nanobelts have shown that the electron mobility

also decreases as a result of radiation damage.26

Quantification of the carrier loss can be obtained from

1/C2-V plots for the rectifiers after alpha particle irradia-

tion shown in Fig. 4. The calculated carrier removal rate

was 406 cm�1 for the 1012 cm�2 dose and 728 cm�1 for the

FIG. 1. (Color online) Schematic of vertical Ni/Au Schottky diode on 7 lm

thick Ga2O3 epilayer doped at 8.3� 1015 cm�3 on a conducting b-Ga2O3

substrate doped at 2.2� 1018 cm�3.

FIG. 2. (Color online) SRIM simulation of vacancy distribution in Ga2O3

exposed to 18 MeV alpha particles to doses of 1012 and 1013 cm�2,

respectively.

FIG. 3. (Color online) Forward (top) and reverse (bottom) current density–

voltage characteristics before and after 18 MeV alpha particle irradiation

with fluences of 1012 or 1013 cm�2.
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1013 cm�2 dose. The initial carrier density of 8.3� 1015

cm�3 was reduced to 7.9� 1015 cm�3 after a dose of

1012 cm�2 and to 1.03� 1015 cm�3 after the higher dose of

1013 cm�2.

Figure 5 shows the rectifier on/off ratio when switching

fromþ1 V forward bias to the reverse voltages shown on the

x-axis. The unirradiated rectifiers showed on/off ratios

of>106 across the entire voltage range investigated. These

values were degraded by alpha particle irradiation, as sum-

marized in Table I. This is due to the reduction of forward

current as the carrier density is reduced by the alpha particle

damage-induced trap introduction. These results show that

some parameters of the rectifiers are more degraded by expo-

sure to high energy alpha particle fluences than others, due

to the specific loss of carriers and electron mobility.

Figure 6 shows a compilation of reported carrier removal

rates for Ga2O3. The carrier removal rates for alpha particle

irradiation of 406–728 cm�1 are the much higher than for

protons, neutrons, or electrons, reported previously. For

example, carrier removal rates of �4.9 cm�1 for 1.5 MeV

electron irradiation and �300 cm�1 for 10 MeV protons

were reported for the same type of rectifiers.25 Note that

alpha particles exhibit the highest carrier removal rates of

the four types of radiation represented. The results for Ga2O3

are also generally comparable to those for GaN (Refs. 20

and 21) and indicate that the former is a good candidate for

space-borne applications.

Finally, we also measured the reverse recovery character-

istics when switching fromþ1 V to a range of reverse biases

and found recovery times of order 20 ns for both control and

alpha particle irradiated rectifiers, as shown in Fig. 7. The

oscillations are due to the decay of stored charge upon

switching bias polarities. This is consistent with both elec-

tron and proton irradiated rectifiers in which the reverse

recovery showed little change with radiation dose,25 since

the minority carrier lifetime (which controls the carrier stor-

age time in the intrinsic layer) is already small in Ga2O3.

Table I and the data shown in this paper emphasize that

the diode parameters most affected by alpha particle irradia-

tion are the on-state resistance, reverse breakdown voltage,

and on-off ratio, while the diode ideality factor, barrier

height, and reverse recovery do not show significant changes

FIG. 4. (Color online) C�2-V characteristics of Ga2O3 rectifiers before and

after alpha particle irradiation at two different doses.

FIG. 5. (Color online) On/off ratio as a function of reverse bias voltage for

rectifiers before and after proton irradiation and subsequent annealing at

either 300 or 450 �C.

TABLE I. Summary of diode and drift region parameters before and after

alpha particle irradiation.

Parameter Reference

Dose

(1012 cm�2)

Dose

(1013 cm�2)

Barrier height (eV) 1.09 1.05 1.04

Ideality factor 1.03 1.09 1.10

RON (mX cm�2) 4.0 22 62

Drift region carrier

concentration (cm�3)

8.3� 1015 7.9� 1015 1.03� 1015

Carrier removal rate (cm�1) n/a 406 728

Reverse recovery time (ns) 22 21 16

Reverse breakdown voltage (V) 60 80 110

On-off ratio (�1 V) 1.9� 107 7.5� 106 4.8� 106

FIG. 6. Carrier removal rate for radiation damage of Ga2O3 measured in this

work and also reported previously, as a function of radiation type and

energy. Similar data for various types of GaN-based high electron mobility

transistors and thin films are shown for comparison.
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for the doses we investigated. Rectifiers are a convenient

platform for investigating radiation effects since they have a

simple structure but yield a large number of measurable

device parameters.

IV. SUMMARY AND CONCLUSIONS

Ga2O3 rectifiers were irradiated with 18 MeV alpha par-

ticles at fluences of 1012–1013 cm�2. The carrier removal

rate in the drift region of the rectifiers was 406–728 cm�1

under these conditions. The reverse breakdown voltage

increases in response to a reduction in channel carrier

density, and the on/off ratio is also degraded. The carrier

removal rates in Ga2O3 are comparable to those in GaN

under similar conditions.
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